Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Haematol ; 200(6): 740-754, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36354085

RESUMO

While the bone marrow (BM) microenvironment is significantly remodelled in acute myeloid leukaemia (AML), molecular insight into AML-specific alterations in the microenvironment has been historically limited by the analysis of liquid marrow aspirates rather than core biopsies that contain solid-phase BM stroma. We assessed the effect of anthracycline- and cytarabine-based induction chemotherapy on both haematopoietic and non-haematopoietic cells directly in core BM biopsies using RNA-seq and histological analysis. We compared matched human core BM biopsies at diagnosis and 2 weeks after cytarabine- and anthracycline-based induction therapy in responders (<5% blasts present after treatment) and non-responders (≥5% blasts present after treatment). Our data indicated enrichment in vimentin (VIM), platelet-derived growth factor receptor beta (PDGFRB) and Snail family transcriptional repressor 2 (SNAI2) transcripts in responders, consistent with the reactivation of the mesenchymal population in the BM stroma. Enrichment of osteoblast maturation-related transcripts of biglycan (BGN), osteopontin (SPP1) and osteonectin (SPARC) was observed in non-responders. To the best of our knowledge, this is the first report demonstrating distinct osteogenic and mesenchymal transcriptome profiles specific to AML response to induction chemotherapy assessed directly in core BM biopsies. Detailing treatment response-specific alterations in the BM stroma may inform optimised therapeutic strategies for AML.


Assuntos
Medula Óssea , Leucemia Mieloide Aguda , Humanos , Medula Óssea/patologia , Transcriptoma , Leucemia Mieloide Aguda/tratamento farmacológico , Citarabina/uso terapêutico , Células da Medula Óssea/patologia , Antraciclinas/uso terapêutico , Biópsia , Microambiente Tumoral
2.
PLoS Biol ; 20(10): e3001805, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36228039

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is mediated by the entry receptor angiotensin-converting enzyme 2 (ACE2). Although attachment factors and coreceptors facilitating entry are extensively studied, cellular entry factors inhibiting viral entry are largely unknown. Using a surfaceome CRISPR activation screen, we identified human LRRC15 as an inhibitory attachment factor for SARS-CoV-2 entry. LRRC15 directly binds to the receptor-binding domain (RBD) of spike protein with a moderate affinity and inhibits spike-mediated entry. Analysis of human lung single-cell RNA sequencing dataset reveals that expression of LRRC15 is primarily detected in fibroblasts and particularly enriched in pathological fibroblasts in COVID-19 patients. ACE2 and LRRC15 are not coexpressed in the same cell types in the lung. Strikingly, expression of LRRC15 in ACE2-negative cells blocks spike-mediated viral entry in ACE2+ cell in trans, suggesting a protective role of LRRC15 in a physiological context. Therefore, LRRC15 represents an inhibitory attachment factor for SARS-CoV-2 that regulates viral entry in trans.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/genética , Ligação Proteica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
3.
Pharmaceuticals (Basel) ; 15(5)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35631444

RESUMO

As COVID-19 continues to pose major risk for vulnerable populations, including the elderly, immunocompromised, patients with cancer, and those with contraindications to vaccination, novel treatment strategies are urgently needed. SARS-CoV-2 infects target cells via RGD-binding integrins, either independently or as a co-receptor with surface receptor angiotensin-converting enzyme 2 (ACE2). We used pan-integrin inhibitor GLPG-0187 to demonstrate the blockade of SARS-CoV-2 pseudovirus infection of target cells. Omicron pseudovirus infected normal human small airway epithelial (HSAE) cells significantly less than D614G or Delta variant pseudovirus, and GLPG-0187 effectively blocked SARS-CoV-2 pseudovirus infection in a dose-dependent manner across multiple viral variants. GLPG-0187 inhibited Omicron and Delta pseudovirus infection of HSAE cells more significantly than other variants. Pre-treatment of HSAE cells with MEK inhibitor (MEKi) VS-6766 enhanced the inhibition of pseudovirus infection by GLPG-0187. Because integrins activate transforming growth factor beta (TGF-ß) signaling, we compared the plasma levels of active and total TGF-ß in COVID-19+ patients. The plasma TGF-ß1 levels correlated with age, race, and number of medications upon presentation with COVID-19, but not with sex. Total plasma TGF-ß1 levels correlated with activated TGF-ß1 levels. Moreover, the inhibition of integrin signaling prevents SARS-CoV-2 Delta and Omicron pseudovirus infectivity, and it may mitigate COVID-19 severity through decreased TGF-ß1 activation. This therapeutic strategy may be further explored through clinical testing in vulnerable and unvaccinated populations.

4.
medRxiv ; 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35018385

RESUMO

As COVID-19 continues to pose major risk for vulnerable populations including the elderly, immunocompromised, patients with cancer, and those with contraindications to vaccination, novel treatment strategies are urgently needed. SARS-CoV-2 infects target cells via RGD-binding integrins either independently or as a co-receptor with surface receptor angiotensin-converting enzyme 2 (ACE2). We used pan-integrin inhibitor GLPG-0187 to demonstrate blockade of SARS-CoV-2 pseudovirus infection of target cells. Omicron pseudovirus infected normal human small airway epithelial (HSAE) cells significantly less than D614G or Delta variant pseudovirus, and GLPG-0187 effectively blocked SARS-CoV-2 pseudovirus infection in a dose-dependent manner across multiple viral variants. GLPG-0187 inhibited Omicron and Delta pseudovirus infection of HSAE cells more significantly than other variants. Pre-treatment of HSAE cells with MEK inhibitor (MEKi) VS-6766 enhanced inhibition of pseudovirus infection by GLPG-0187. Because integrins activate TGF-ß signaling, we compared plasma levels of active and total TGF-ß in COVID-19+ patients. Plasma TGF-ß1 levels correlated with age, race, and number of medications upon presentation with COVID-19, but not with sex. Total plasma TGF-ß1 levels correlated with activated TGF-ß1 levels. In our preclinical studies, Omicron infects lower airway lung cells less efficiently than other COVID-19 variants. Moreover, inhibition of integrin signaling prevents SARS-CoV-2 Delta and Omicron pseudovirus infectivity, and may mitigate COVID-19 severity through decreased TGF-ß1 activation. This therapeutic strategy may be further explored through clinical testing in vulnerable and unvaccinated populations.

5.
Cardiovasc Res ; 118(16): 3211-3224, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35018410

RESUMO

AIMS: Pulmonary arterial hypertension (PAH) is a fatal disease without a cure. Previously, we found that transcription factor RUNX1-dependent haematopoietic transformation of endothelial progenitor cells may contribute to the pathogenesis of PAH. However, the therapeutic potential of RUNX1 inhibition to reverse established PAH remains unknown. In the current study, we aimed to determine whether RUNX1 inhibition was sufficient to reverse Sugen/hypoxia (SuHx)-induced pulmonary hypertension (PH) in rats. We also aimed to demonstrate possible mechanisms involved. METHODS AND RESULTS: We administered a small molecule specific RUNX1 inhibitor Ro5-3335 before, during, and after the development of SuHx-PH in rats to investigate its therapeutic potential. We quantified lung macrophage recruitment and activation in vivo and in vitro in the presence or absence of the RUNX1 inhibitor. We generated conditional VE-cadherin-CreERT2; ZsGreen mice for labelling adult endothelium and lineage tracing in the SuHx-PH model. We also generated conditional Cdh5-CreERT2; Runx1(flox/flox) mice to delete Runx1 gene in adult endothelium and LysM-Cre; Runx1(flox/flox) mice to delete Runx1 gene in cells of myeloid lineage, and then subjected these mice to SuHx-PH induction. RUNX1 inhibition in vivo effectively prevented the development, blocked the progression, and reversed established SuHx-induced PH in rats. RUNX1 inhibition significantly dampened lung macrophage recruitment and activation. Furthermore, lineage tracing with the inducible VE-cadherin-CreERT2; ZsGreen mice demonstrated that a RUNX1-dependent endothelial to haematopoietic transformation occurred during the development of SuHx-PH. Finally, tissue-specific deletion of Runx1 gene either in adult endothelium or in cells of myeloid lineage prevented the mice from developing SuHx-PH, suggesting that RUNX1 is required for the development of PH. CONCLUSION: By blocking RUNX1-dependent endothelial to haematopoietic transformation and pulmonary macrophage recruitment and activation, targeting RUNX1 may be as a novel treatment modality for pulmonary arterial hypertension.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Ratos , Camundongos , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/genética , Hipertensão Pulmonar Primária Familiar , Hipóxia/complicações , Artéria Pulmonar , Modelos Animais de Doenças
6.
bioRxiv ; 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34845449

RESUMO

SARS-CoV-2 infection is mediated by the entry receptor ACE2. Although attachment factors and co-receptors facilitating entry are extensively studied, cellular entry factors inhibiting viral entry are largely unknown. Using a surfaceome CRISPR activation screen, we identified human LRRC15 as an inhibitory receptor for SARS-CoV-2 entry. LRRC15 directly binds to the receptor-binding domain (RBD) of spike protein with a moderate affinity and inhibits spike-mediated entry. Analysis of human lung single cell RNA sequencing dataset reveals that expression of LRRC15 is primarily detected in fibroblasts and particularly enriched in pathological fibroblasts in COVID-19 patients. ACE2 and LRRC15 are not co-expressed in the same cell types in the lung. Strikingly, expression of LRRC15 in ACE2-negative cells blocks spike-mediated viral entry in ACE2+ cell in trans, suggesting a protective role of LRRC15 in a physiological context. Therefore, LRRC15 represents an inhibitory receptor for SARS-CoV-2 regulating viral entry in trans.

7.
Am J Physiol Cell Physiol ; 321(3): C569-C584, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34288720

RESUMO

Rheumatoid arthritis (RA) is a debilitating autoimmune disease of unknown cause, characterized by infiltration and accumulation of activated immune cells in the synovial joints where cartilage and bone destructions occur. Myeloid-derived suppressor cells (MDSCs) are of myeloid origin and are able to suppress T cell responses. Src homology 2 domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP1) was shown to be involved in the regulation of MDSC differentiation. The purpose of the present study was to investigate the effect of inhibition of SHIP1 on the expansion of MDSCs in RA using a collagen-induced inflammatory arthritis (CIA) mouse model. In DBA/1 mice, treatment with a small molecule-specific SHIP1 inhibitor 3α-aminocholestane (3AC) induced a marked expansion of MDSCs in vivo. Both pretreatment with 3AC of DBA/1 mice prior to CIA induction and intervention with 3AC during CIA progression significantly reduced disease incidence and severity. Adoptive transfer of MDSCs isolated from 3AC-treated mice, but not naïve MDSCs from normal mice, into CIA mice significantly reduced disease incidence and severity, indicating that the 3AC-induced MDSCs were the cellular mediators of the observed amelioration of the disease. In conclusion, inhibition of SHIP1 expands MDSCs in vivo and attenuates development of CIA in mice. Small molecule-specific inhibition of SHIP1 may therefore offer therapeutic benefit to patients with RA and other autoimmune diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Colestanos/farmacologia , Células Supressoras Mieloides/imunologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Artrite Experimental/genética , Artrite Experimental/imunologia , Artrite Experimental/patologia , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Comunicação Celular , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Expressão Gênica , Humanos , Cápsula Articular/efeitos dos fármacos , Cápsula Articular/imunologia , Cápsula Articular/patologia , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Células Supressoras Mieloides/citologia , Células Supressoras Mieloides/transplante , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/antagonistas & inibidores , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/imunologia , Índice de Gravidade de Doença , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/patologia
8.
Aging (Albany NY) ; 12(24): 25939-25955, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33378745

RESUMO

Adult hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow (BM) ensuring homeostasis of blood production and immune response throughout life. Sex differences in immunocompetence and mortality are well-documented in humans. However, whether HSPCs behave dimorphically between sexes during aging remains unknown. Here, we show that a significant expansion of BM-derived HSPCs occurs in the middle age of female but in the old age of male mice. We then show that a decline of HSPCs in male mice, as indicated by the expression levels of select hematopoietic genes, occurs much earlier in the aging process than that in female mice. Sex-mismatched heterochronic BM transplantations indicate that the middle-aged female BM microenvironment plays a pivotal role in sustaining hematopoietic gene expression during aging. Furthermore, a higher concentration of the pituitary sex hormone follicle-stimulating hormone (FSH) in the serum and a concomitant higher expression of its receptor on HSPCs in the middle-aged and old female mice than age-matched male mice, suggests that FSH may contribute to the sexual dimorphism in aging hematopoiesis. Our study reveals that HSPCs in the BM niches are possibly regulated in a sex-specific manner and influenced differently by sex hormones during aging hematopoiesis.


Assuntos
Envelhecimento/fisiologia , Hormônio Foliculoestimulante/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Receptores do FSH/metabolismo , Caracteres Sexuais , Animais , Antígenos Ly/metabolismo , Medula Óssea , Transplante de Medula Óssea , Linhagem da Célula , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Hormônio Foliculoestimulante/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/fisiologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Nicho de Células-Tronco
9.
Oncotarget ; 11(46): 4201-4223, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33245731

RESUMO

COVID-19 affects vulnerable populations including elderly individuals and patients with cancer. Natural Killer (NK) cells and innate-immune TRAIL suppress transformed and virally-infected cells. ACE2, and TMPRSS2 protease promote SARS-CoV-2 infectivity, while inflammatory cytokines IL-6, or G-CSF worsen COVID-19 severity. We show MEK inhibitors (MEKi) VS-6766, trametinib and selumetinib reduce ACE2 expression in human cells. In some human cells, remdesivir increases ACE2-promoter luciferase-reporter expression, ACE2 mRNA and protein, and ACE2 expression is attenuated by MEKi. In serum-deprived and stimulated cells treated with remdesivir and MEKi we observed correlations between pRB, pERK, and ACE2 expression further supporting role of proliferative state and MAPK pathway in ACE2 regulation. We show elevated cytokines in COVID-19-(+) patient plasma (N = 9) versus control (N = 11). TMPRSS2, inflammatory cytokines G-CSF, M-CSF, IL-1α, IL-6 and MCP-1 are suppressed by MEKi alone or with remdesivir. We observed MEKi stimulation of NK-cell killing of target-cells, without suppressing TRAIL-mediated cytotoxicity. Pseudotyped SARS-CoV-2 virus with a lentiviral core and SARS-CoV-2 D614 or G614 SPIKE (S) protein on its envelope infected human bronchial epithelial cells, small airway epithelial cells, or lung cancer cells and MEKi suppressed infectivity of the pseudovirus. We show a drug class-effect with MEKi to stimulate NK cells, inhibit inflammatory cytokines and block host-factors for SARS-CoV-2 infection leading also to suppression of SARS-CoV-2-S pseudovirus infection of human cells. MEKi may attenuate SARS-CoV-2 infection to allow immune responses and antiviral agents to control disease progression.

10.
bioRxiv ; 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32793908

RESUMO

COVID-19 affects vulnerable populations including elderly individuals and patients with cancer. Natural Killer (NK) cells and innate-immune TRAIL suppress transformed and virally-infected cells. ACE2, and TMPRSS2 protease promote SARS-CoV-2 infectivity, while inflammatory cytokines IL-6, or G-CSF worsen COVID-19 severity. We show MEK inhibitors (MEKi) VS-6766, trametinib and selumetinib reduce ACE2 expression in human cells. In some human cells, remdesivir increases ACE2-promoter luciferase-reporter expression, ACE2 mRNA and protein, and ACE2 expression is attenuated by MEKi. In serum-deprived and stimulated cells treated with remdesivir and MEKi we observed correlations between pRB, pERK, and ACE2 expression further supporting role of proliferative state and MAPK pathway in ACE2 regulation. We show elevated cytokines in COVID-19-(+) patient plasma (N=9) versus control (N=11). TMPRSS2, inflammatory cytokines G-CSF, M-CSF, IL-1α, IL-6 and MCP-1 are suppressed by MEKi alone or with remdesivir. We observed MEKi stimulation of NK-cell killing of target-cells, without suppressing TRAIL-mediated cytotoxicity. Pseudotyped SARS-CoV-2 virus with a lentiviral core and SARS-CoV-2 D614 or G614 SPIKE (S) protein on its envelope infected human bronchial epithelial cells, small airway epithelial cells, or lung cancer cells and MEKi suppressed infectivity of the pseudovirus. We show a drug class-effect with MEKi to stimulate NK cells, inhibit inflammatory cytokines and block host-factors for SARS-CoV-2 infection leading also to suppression of SARS-CoV-2-S pseudovirus infection of human cells. MEKi may attenuate SARS-CoV-2 infection to allow immune responses and antiviral agents to control disease progression.

11.
J Ginseng Res ; 44(3): 435-441, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32372865

RESUMO

BACKGROUND: As a process of aging, skeletal muscle mass and function gradually decrease. It is reported that ginsenoside Rb1 and Rb2 play a role as AMP-activated protein kinase activator, resulting in regulating glucose homeostasis, and Rb1 reduces oxidative stress in aged skeletal muscles through activating the phosphatidylinositol 3-kinase/Akt/Nrf2 pathway. We examined the effects of Rb1 and Rb2 on differentiation of the muscle stem cells and myotube formation. METHODS: C2C12 myoblasts treated with Rb1 and/or Rb2 were differentiated and induced to myotube formation, followed by immunoblotting for myogenic marker proteins, such as myosin heavy chain, MyoD, and myogenin, or immunostaining for myosin heavy chain or immunoprecipitation analysis for heterodimerization of MyoD/E-proteins. RESULTS: Rb1 and Rb2 enhanced myoblast differentiation through accelerating MyoD/E-protein heterodimerization and increased myotube hypertrophy, accompanied by activation of Akt/mammalian target of rapamycin signaling. In addition, Rb1 and Rb2 induced the MyoD-mediated transdifferentiation of the rhabdomyosarcoma cells into myoblasts. Furthermore, co-treatment with Rb1 and Rb2 had synergistically enhanced myoblast differentiation through Akt activation. CONCLUSION: Rb1 and Rb2 upregulate myotube growth and myogenic differentiation through activating Akt/mammalian target of rapamycin signaling and inducing myogenic conversion of fibroblasts. Thus, our first finding indicates that Rb1 and Rb2 have strong potential as a helpful remedy to prevent and treat muscle atrophy, such as age-related muscular dystrophy.

12.
Am J Chin Med ; 48(3): 631-650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32329640

RESUMO

The loss of skeletal muscle mass and function is a serious consequence of chronic diseases and aging. BST204 is a purified ginseng (the root of Panax ginseng) extract that has been processed using ginsenoside-ß-glucosidase and acid hydrolysis to enrich ginsenosides Rg3 and Rh2 from the crude ginseng. BST204 has a broad range of health benefits, but its effects and mechanism on muscle atrophy are currently unknown. In this study, we have examined the effects and underlying mechanisms of BST204 on myotube formation and myotube atrophy induced by tumor necrosis factor-α (TNF-α). BST204 promotes myogenic differentiation and multinucleated myotube formation through Akt activation. BST204 prevents myotube atrophy induced by TNF-α through the activation of Akt/mTOR signaling and down-regulation of muscle-specific ubiquitin ligases, MuRF1, and Atrogin-1. Furthermore, BST204 treatment in atrophic myotubes suppresses mitochondrial reactive oxygen species (ROS) production and regulates mitochondrial transcription factors such as NRF1 and Tfam, through enhancing the activity and expression of peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α). Collectively, our findings indicate that BST204 improves myotube formation and PGC1α-mediated mitochondrial function, suggesting that BST204 is a potential therapeutic or neutraceutical remedy to intervene muscle weakness and atrophy.


Assuntos
Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Panax/química , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Animais , Atrofia/induzido quimicamente , Atrofia/tratamento farmacológico , Humanos , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/fisiologia , Fator 1 Nuclear Respiratório/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Extratos Vegetais/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estimulação Química , Serina-Treonina Quinases TOR/metabolismo , Fator de Necrose Tumoral alfa
13.
J Cell Physiol ; 235(2): 1425-1437, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31287165

RESUMO

SH2-containing inositol-5'-phosphatase-1 (SHIP-1) controls the phosphatidylinositol-3'-kinase (PI3K) initiated signaling pathway by limiting cell membrane recruitment and activation of Akt. Despite the fact that many of the growth factors important to cartilage development and functions are able to activate the PI3K signal transduction pathway, little is known about the role of PI3K signaling in chondrocyte biology and its contribution to mammalian skeletogenesis. Here, we report that the lipid phosphatase SHIP-1 regulates chondrocyte hypertrophy and skeletal development through its expression in osteochondroprogenitor cells. Global SHIP-1 knockout led to accelerated chondrocyte hypertrophy and premature formation of the secondary ossification center in the bones of postnatal mice. Drastically higher vascularization and greater number of c-kit + progenitors associated with sinusoids in the bone marrow also indicated more advanced chondrocyte hypertrophic differentiation in SHIP-1 knockout mice than in wild-type mice. In corroboration with the in vivo phenotype, SHIP-1 deficient PDGFRα + Sca-1 + osteochondroprogenitor cells exhibited rapid differentiation into hypertrophic chondrocytes under chondrogenic culture conditions in vitro. Furthermore, SHIP-1 deficiency inhibited hypoxia-induced cellular activation of Akt and extracellular-signal-regulated kinase (Erk) and suppressed hypoxia-induced cell proliferation. These results suggest that SHIP-1 is required for hypoxia-induced growth signaling under physiological hypoxia in the bone marrow. In conclusion, the lipid phosphatase SHIP-1 regulates skeletal development by modulating chondrogenesis and the hypoxia response of the osteochondroprogenitors during endochondral bone formation.


Assuntos
Diferenciação Celular/fisiologia , Condrócitos/citologia , Hipertrofia/metabolismo , Metabolismo dos Lipídeos/fisiologia , Osteogênese , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Esqueleto/crescimento & desenvolvimento , Animais , Osso e Ossos/metabolismo , Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Condrogênese/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Lipídeos , Camundongos , Osteogênese/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/deficiência
14.
JCI Insight ; 4(1)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30626750

RESUMO

In heart failure and type 2 diabetes mellitus (DM), the majority of patients have hypomagnesemia, and magnesium (Mg) supplementation has improved cardiac function and insulin resistance. Recently, we have shown that DM can cause cardiac diastolic dysfunction (DD). Therefore, we hypothesized that Mg supplementation would improve diastolic function in DM. High-fat diet-induced diabetic mouse hearts showed increased cardiac DD and hypertrophy. Mice with DM showed a significantly increased E/e' ratio (the ratio of transmitral Doppler early filling velocity [E] to tissue Doppler early diastolic mitral annular velocity [e']) in the echocardiogram, left ventricular end diastolic volume (LVEDV), incidence of DD, left ventricular posterior wall thickness in diastole (PWTd), and ratio of heart weight to tibia length (HW/TL) when compared with controls. DM mice also had hypomagnesemia. Ventricular cardiomyocytes isolated from DM mice exhibited decreased mitochondrial ATP production, a 1.7- ± 0.2-fold increase of mitochondrial ROS, depolarization of the mitochondrial membrane potential, and mitochondrial Ca2+ overload. Dietary Mg administration (50 mg/ml in the drinking water) for 6 weeks increased plasma Mg concentration and improved cardiac function. At the cellular level, Mg improved mitochondrial function with increased ATP, decreased mitochondrial ROS and Ca2+ overload, and repolarized mitochondrial membrane potential. In conclusion, Mg supplementation improved mitochondrial function, reduced oxidative stress, and prevented DD in DM.

15.
Cancer Biol Ther ; 20(2): 201-211, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30277839

RESUMO

SH2-containing inositol 5'-phosphatase-1 (SHIP1) deficiency in mice results in abnormal myeloid expansion, and proinflammatory conditions in the lung. However, the mechanisms involved in SHIP1-mediated regulation of myeloid differentiation remain unclear. Here we show that SHIP1 is a key regulator of early differentiation for dendritic cells (DCs). We also provide critical evidence to modify the function of SHIP1 in in vitro development of BMDCs using the recent framework of defining DCs. We found that loss of SHIP1 suppresses GM-CSF-induced formation of bone marrow-derived DC (BMDC) colonies, leading to reduced BMDC number in BM cell culture. The number of maturated BMDCs decreased in SHIP1-KO culture, due to reduction of immature BMDCs, suggesting SHIP1 is critical for lineage commitment rather than for maturation from myeloid precursors to DCs. We further showed that F4/80+/MHCIIlow BM macrophage-like cells (BMMs) were the main population of SHIP1-KO BM culture. Treatment of wild-type BM culture with 3 α-aminocholestane (3AC), a specific inhibitor for functional activity of SHIP1, caused a similar developmental defect in BMDCs as seen in SHIP1-KO cells, resulting in the absence of BMDC colony, and increased number of BMMs in BM culture. In conclusion, our results suggest that differentiation of BMDCs are markedly impaired under SHIP1 deficient condition, which causes skewed development of myeloid lineage cells manifested as pathological conditions associated with an excess of macrophage population.


Assuntos
Células Dendríticas/metabolismo , Macrófagos/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Animais , Diferenciação Celular , Humanos , Lipídeos , Camundongos
16.
Cardiovasc Res ; 113(13): 1560-1573, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016733

RESUMO

AIMS: The pathogenic mechanisms of pulmonary arterial hypertension (PAH) remain unclear, but involve dysfunctional endothelial cells (ECs), dysregulated immunity and inflammation in the lung. We hypothesize that a developmental process called endothelial to haematopoietic transition (EHT) contributes to the pathogenesis of pulmonary hypertension (PH). We sought to determine the role of EHT in mouse models of PH, to characterize specific cell types involved in this process, and to identify potential therapeutic targets to prevent disease progression. METHODS AND RESULTS: When transgenic mice with fluorescence protein ZsGreen-labelled ECs were treated with Sugen/hypoxia (Su/Hx) combination to induce PH, the percentage of ZsGreen+ haematopoietic cells in the peripheral blood, primarily of myeloid lineage, significantly increased. This occurrence coincided with the depletion of bone marrow (BM) ZsGreen+ c-kit+ CD45- endothelial progenitor cells (EPCs), which could be detected accumulating in the lung upon PH-induction. Quantitative RT-PCR based gene array analysis showed that key transcription factors driving haematopoiesis were expressed in these EPCs. When transplanted into lethally irradiated recipient mice, the BM-derived EPCs exhibited long-term engraftment and haematopoietic differentiation capability, indicating these EPCs are haemogenic in nature. Specific inhibition of the critical haematopoietic transcription factor Runx1 blocked the EHT process in vivo, prevented egress of the BM EPCs and ultimately attenuated PH progression in Su/Hx- as well as in monocrotaline-induced PH in mice. Thus, myeloid-skewed EHT promotes the development of PH and inhibition of this process prevents disease progression in mouse models of PH. Furthermore, high levels of Runx1 expression were found in circulating CD34+ CD133+ EPCs isolated from peripheral blood of patients with PH, supporting the clinical relevance of our proposed mechanism of EHT. CONCLUSION: EHT contributes to the pathogenesis of PAH. The transcription factor Runx1 may be a novel therapeutic target for the treatment of PAH.


Assuntos
Pressão Arterial , Linhagem da Célula , Transdiferenciação Celular , Células Progenitoras Endoteliais/patologia , Células-Tronco Hematopoéticas/patologia , Hipertensão Pulmonar/patologia , Artéria Pulmonar/patologia , Antígeno AC133/sangue , Animais , Antígenos CD34/metabolismo , Estudos de Casos e Controles , Subunidade alfa 2 de Fator de Ligação ao Core/sangue , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Modelos Animais de Doenças , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/transplante , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Antígenos Comuns de Leucócito/metabolismo , Camundongos Transgênicos , Fenótipo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia
17.
Am J Pathol ; 187(9): 2102-2111, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28710904

RESUMO

Infantile hemangiomas are benign tumors of vascular endothelial cells (ECs), characterized by three distinct stages: proliferating phase, involuting phase, and involuted phase. The mechanisms that trigger involution of hemangioma into fibro-fatty tissue remain unknown. We report a novel mechanism by which M1-polarized macrophages induce endothelial-to-mesenchymal transition (EndMT) and promote hemangioma regression. M1- but not M2-polarized macrophages induced EndMT in ECs. Tumor necrosis factor-α and, to a lesser extent, IL-1ß and interferon-γ were the most potent cytokines produced by the M1 macrophages that induce in vitro EndMT. Western blot analysis and gene expression profiling showed that ECs treated with M1 macrophages, tumor necrosis factor-α, or IL-1ß decreased the expression of endothelial markers, whereas mesenchymal markers increased concomitantly. Immunohistochemical staining of patient samples revealed that a significant perivascular infiltration of M1, but not M2, macrophages coincides with endothelial expression of the critical EndMT transcription factors Snail/Slug in involuting hemangiomas. Most strikingly, M1 macrophage-treated ECs isolated from patient hemangiomas (HemECs) but not untreated HemECs readily differentiated into adipocytes on adipogenic induction. Thus, in vitro EndMT and adipogenesis of HemECs have, in part, recapitulated the natural history of hemangioma regression. In conclusion, our findings indicate that EndMT induced by M1 macrophages promotes infantile hemangioma regression and may lead to novel therapeutic treatments for this vascular tumor.


Assuntos
Diferenciação Celular/fisiologia , Células Endoteliais/metabolismo , Hemangioma Capilar/metabolismo , Macrófagos/metabolismo , Polaridade Celular/fisiologia , Proliferação de Células/fisiologia , Células Endoteliais/patologia , Hemangioma Capilar/patologia , Humanos
18.
Cancer Biol Ther ; 18(3): 152-157, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28296555

RESUMO

There is increasing evidence showing specific roles of microRNA in cell differentiation and cancer progression. Here we examine miRNA profiles during maturation of monocytes and bone marrow-derived dendritic cells (BMDCs) in human and mouse, respectively. We have identified significant changes of various miRNA expression during monocyte and BMDC monocyte development via miRNA microarrays, confirmed by quantitative PCR. Increases in miR155 expression positively correlated with increasing maturity of monocyte and BMDC in both mouse and human microarrays, indicating its importance in development. We describe a requirement of miR155 for MHCII expression during GM-CSF-induced development and LPS-induced maturation of DCs, suggesting reduced immune function of DC when miR155 is absent. Our study suggests that miRNAs might have an important role in differentiation of myeloid cell such as dendritic cells and macrophages.


Assuntos
Células Dendríticas/fisiologia , Macrófagos/fisiologia , MicroRNAs/biossíntese , Animais , Diferenciação Celular/fisiologia , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , MicroRNAs/genética
19.
J Neuroinflammation ; 13(1): 133, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27250711

RESUMO

BACKGROUND: Chronic infection with Theiler's murine encephalomyelitis virus (TMEV) in susceptible SJL/J mice induces an immune-mediated demyelinating disease and has extensively been used as a relevant infectious model for multiple sclerosis (MS). Infection of the host with many other viruses also leads to acute or chronic inflammatory diseases in the central nervous system (CNS). Levels of viral load in the host often play a critical role in the pathogenesis of virus-induced diseases. Thus, the inhibition of viral replication in the host against a broad spectrum of similar viruses is critically important for preventing the viral pathogenicity. METHODS: P2/P3-expressing transgenic (B6 X SJL)F1 founders were generated and bred onto the C57BL/6 and SJL/J backgrounds. Differences in the development of demyelinating disease were compared. Viral persistence, cytokine production, and immune responses in the CNS of infected control and P2/P3-Tg mice were analyzed after infection using quantitative PCR, ELISA, and flow cytometry. Various cell types from the control and P2/P3-Tg mice, as well as cells transfected in vitro with the P2 and/or P3 regions, were also analyzed for viral replication and innate cytokine production. RESULTS: P2/P3-transgenic (P2/P3-Tg) mice carrying the viral non-structural protein genes displayed significantly reduced virus-specific T cell responses in the CNS against both the structural and non-structural proteins. Consequently, viral loads in the CNS were greater in the Tg mice during the chronic infection. However, P2/P3-Tg SJL mice exhibited reduced disease incidence and less severe clinical symptoms than did their non-transgenic littermates. Interestingly, P2/P3-Tg mice showed low viral loads in the CNS at a very early period after infection (1-3 days) with TMEV and related EMCV but not unrelated VSV. Cells from P2/P3-Tg mice and cells transfected with the P2 and/or P3 regions in vitro yielded also lower viral replication but higher IFN-α/ß production. CONCLUSIONS: This study demonstrates that the expression of viral non-structural genes in mice inhibits initial viral replication and suppresses sustaining pathogenic anti-viral immune responses to broad viral determinants. It appears that the elevation of innate immune cytokines produced in the cells expressing the non-structural viral genes upon viral infection is responsible for the inhibitions. The inhibition is partially virus-specific as it is more efficient for a related virus compared to an unrelated virus, suggesting a role for the similarity in the viral genome structures. Therefore, the expression of viral non-structural genes may serve as a useful new method to prevent a broadly virus-specific pathogenesis in the hosts.


Assuntos
Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Regulação Viral da Expressão Gênica , Theilovirus/genética , Theilovirus/metabolismo , Replicação Viral/fisiologia , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T/fisiologia
20.
Eur J Paediatr Neurol ; 20(3): 421-5, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26947546

RESUMO

We describe a 4-year-old male child born to non-consanguineous Spanish parents with progressive encephalopathy (PE), microcephaly, and hypertonia. Whole exome sequencing revealed compound heterozygous BRAT1 mutations [c.1564G > A (p.Glu522Lys) and c.638dup (p.Val214Glyfs*189)]. Homozygous and compound heterozygous BRAT1 mutations have been described in patients with lethal neonatal rigidity and multifocal seizure syndrome (MIM# 614498). The seven previously described patients suffered from uncontrolled seizures, and all of those patients died in their first months of life. BRAT1 acts as a regulator of cellular proliferation and migration and is required for mitochondrial function. The loss of these functions may explain the cerebral atrophy observed in this case of PE. This case highlights the extraordinary potential of next generation technologies for the diagnosis of rare genetic diseases, including PE. Making a prompt diagnosis of PE is important for genetic counseling and disease management.


Assuntos
Microcefalia/genética , Mutação/genética , Proteínas Nucleares/genética , Convulsões/genética , Criança , Heterozigoto , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...